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ABSTRACT: We show here that the Kirchhoff index of a network is the average of the
Wiener capacities of its vertices. Moreover, we obtain a closed-form formula for the
effective resistance between any pair of vertices when the considered network has some
symmetries, which allows us to give the corresponding formulas for the Kirchhoff index.
In addition, we find the expression for the Foster’s n-th formula. © 2008 Wiley Periodicals,
Inc. Int J Quantum Chem 108: 1200–1206, 2008
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1. Introduction and Preliminaries

T he computation of the effective resistance
between any pair of vertices of a network as

well as the computation of the Kirchhoff index has
interest in electric circuit and probabilistic theory.
In recent years, the utility of the Kirchhoff index
in Chemistry has been established as a better alter-
native to other parameters used for discriminating
among different molecules with similar shapes and
structures, see for instance [1–4]. In fact, in [1] the
Kirchhoff index was introduced for the first time.
Moreover, this work can be considered the origin of
a new line of research with a considerable amount of
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production. The effective resistance and the Kirch-
hoff index have been computed for some classes of
graphs with symmetries, see [3, 5, 6]. In particular,
Palacios in [7] gave a closed-form formula for the
Kirchhoff index for distance-regular graphs and a class
of graphs of diameter two. His approach is based on
the first and second Foster’s formula. Later, in [8]
he extended these techniques to a class of graphs
with diameter three by proving the so-called third
Foster’s formula.

In this article, we use a different approach based
on discrete Potential Theory in order to compute
the effective resistances. Specifically, we consider the
so-called equilibrium measures of the network asso-
ciated with the combinatorial Laplacian kernel and
the corresponding Wiener capacities, see [9–11]. In
particular, we prove that the Kirchhoff index is noth-
ing else but the average of the Wiener capacities of
the vertices of the network. Often, when the network
has sufficient symmetry the equilibrium measures
can be computed by hand and hence we can obtain

International Journal of Quantum Chemistry, Vol 108, 1200–1206 (2008)
© 2008 Wiley Periodicals, Inc.



FORMULA FOR KIRCHHOFF INDEX

explicit formulas for the effective resistances and the
Kirchhoff index. This is the case of distance-regular
graphs, the so-called weighted barbell networks and the
wagon wheel network that we analyze at the end of the
article.

Although we do not use the Foster’s formulas
in our proofs, a full generalization of those for-
mulas can be easily obtained from the expression
of the effective resistance in terms of equilibrium
measures. Of course, following the Palacios’ tech-
nique the Foster’s formulas are of potential appli-
cation in the computation of Kirchhoff index for
graphs or networks with diameter greater than
three.

In this article, � denotes a network; that is, a sim-
ple and finite connected graph, with vertex set V =
{1, 2, . . . , n} and edge set E, in which each edge (i, j)
has been assigned a conductance cij > 0. In addition,
when (i, j) /∈ E we define cij = 0 and in particular
cii = 0 for any i. We define the (weighted) degree of i as
δi = ∑n

j=1 cij and the value qi = max
1≤j≤n

{cij}.
The matrix P = (pij), where pij = cij/δi is usually

called the transition probability matrix of the reversible
Markov chain associated with the network. More
generally, for any k ≥ 1, the k-th power of P,

(
p(k)

ij

)
,

is called the k-step transition probability matrix. Its ij
entry is the probability that after k steps the Markov
chain reaches vertex j when starting from vertex i.
Moreover, for k ≥ 2 this value is given by the identity
p(k)

ij = ∑n
l1,...,lk−1=1(cil1cl1l2 . . . clk−1j/δiδl1 . . . δlk−1), which

implies that
∑n

j=1 p(k)

ij = 1 and also that
∑n

i=1 δip
(k)

ij =
δj, for any k ≥ 1. The trace of the k-step transition
probability matrix is denoted by tr(Pk).

The combinatorial Laplacian of � is the matrix L,
whose entries are Lij = −cij for all i �= j and Lii = δi.
Therefore, for each vector u ∈ IRn and for each i =
1, . . . , n

(Lu)i = δiui −
n∑

j=1

cijuj =
n∑

j=1

cij(ui − uj). (1)

It is well-known that Lu = 0 iff u = ae, a ∈ IR,
where e is the vector whose entries equal one. There-
fore, given f ∈ IRn, the linear system Lu = f has
solution iff

∑n
i=1 fi = 0 and in this case there exists

a unique solution up to a constant. In addition, the
combinatorial Laplacian verifies the minimum princi-
ple, see [11]. In particular, this property implies that
if u ∈ IRn satisfies ui ≥ 0 and (Lu)j ≥ 0, for any j �= i,
then uj ≥ 0 for all j = 1, . . . , n.

If for each i = 1, . . . , n, ei denotes the ith unit vec-
tor, with 1 in the ith position, and 0 elsewhere, the

linear system Lu = e − nei has a unique solution
denoted by ν i such that ν i

i = 0. This solution is called
the equilibrium measure of the set V \{i}, see [11,12]. In
these references, the authors proved that any equi-
librium measure can be obtained as the solution of a
linear programming problem and also as the solution
of a convex quadratic programming problem. The
value cap(i) = ∑n

j=1 ν i
j is called the Wiener capacity of

vertex i.

Lemma 1.1: It is satisfied that ν i
j ≥ qi + δj − cij/

δjqi > 0, for any j �= i. In addition, cap(i) ≥ 1/qi

(
n −

1+∑
j �=i(qi − cij/δj)

)
and equality holds iff cij = qi for

j �= i.

Proof: Consider u ∈ IRn given by ui = 0 and uj =
1/qi for j �= i. Then, (Lu)j = cij/qi ≤ 1 for any j �=
i and the equality holds iff cij = qi. Applying the
minimum principle we obtain that ν i

j ≥ uj for any
j �= i and hence the lower bound for ν i

j follows from
the inequality

1 = Lν i
j = δjν

i
j −

n∑
l=1
l �=j

cjlν
i
l ≤ δjν

i
j − δj

qi
+ cij

qi
.

Moreover,

cap(i) =
n∑

j=1

ν i
j ≥ 1

qi


n − 1 +

∑
j �=i

qi − cij

δj




and the equality holds iff ν i
j = 1/qi for any j �= i; that

is, iff cij = qi for any j �= i.

2. An Explicit Formula for the
Kirchhoff Index

One of the main problems in Network Theory is
to calculate the effective resistance between any pair
of vertices. If i, j ∈ V, the effective resistance between i
and j is defined as Rij = ui − uj, where u ∈ IRn is any
solution of the linear system Lu = ei−ej. Note that Rij

does not depend on the chosen solution. Therefore,
Rij = Rji and Rii = 0. The Total resistance or Kirchhoff
index of the network is defined as

R(�) = 1
2

n∑
i,j=1

Rij. (2)
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The following result expresses the effective resis-
tance in terms of equilibrium measures and it was
proved in [11, Corollary 4.2]. We include its proof
here for the sake of completeness, and because it
allows us to obtain directly a closed-form formula
for the Kirchhoff index of �.

Proposition 2.1: For any i, j = 1, . . . , n it is verified
that Rij = 1/n(ν i

j + ν
j
i ) and hence

R(�) = 1
n

n∑
i=1

cap(i).

Proof: If we consider u = 1/n(ν j − ν i), then Lu =
ei − ej and hence

Rij = ui − uj = 1
n

(
ν

j
i + ν i

j

)
.

Therefore,

R(�) = 1
2n

n∑
i,j=1

(
ν

j
i +ν i

j

) = 1
n

n∑
i=1

n∑
j=1

ν i
j = 1

n

n∑
i=1

cap(i).

Taking into account the lower bounds for equi-
librium measures and its corresponding Wiener
capacities established in Lemma 1.1, we obtain the
following lower bounds for the effective resistances
and the Kirchhoff index.

Corollary 2.2: It is verified that Rij ≥ qi + qj/nqiqj +
δi + δj/nδiδj − cij(δiqj + δjqi)/nδiδjqiqj for any 1 ≤ i <

j ≤ n. Moreover,

R(�) ≥ (n − 1)

n

n∑
i=1

(
1
qi

+ 1
δi

)
− 1

n

n∑
i,j=1

cij

qiδj

and the equality holds iff there exists c > 0 such that
cij = c for any i, j = 1, . . . , n, i �= j; that is, iff � is a
complete network with constant conductances.

Observe that if � is a graph, then Rij ≥ 2/n when
i ∼ j and Rij ≥ 1/n(2 + 1/δi + 1/δj) when i �∼ j.
Therefore, R(�) ≥ n − 2 + n − 1/n

∑n
i=1 1/δi ≥ n −

1 with equality iff � is the complete graph, a well-
known property, see for instance [3].

As a by-product of the expression of the effective
resistance given in Proposition 2.1, we can derive a
full generalization of the so-called Foster’s identi-
ties, see [2, 8]. We remark that the case k = 1 is the

most popular Foster’s formula. In [8], the formulas
were obtained from a probabilistic approach only for
k = 1, 2, 3, whereas in [2, Theorem G] these formulas
were obtained in all the cases as a consequence of an
algebraic and systematic treatment of the so-called
sum rules. We can also mention the work [13] that
also develops some sum rules by using an eigenvalue
approach.

Proposition 2.3: For any k ≥ 1 it is verified that

1
2

n∑
i,j=1

δiRijp
(k)

ij = n − k +
k−1∑
j=1

tr(Pj).

Proof: First note that

n∑
i,j=1

δiRijp
(k)

ij = 1
n

n∑
i,j=1

δiν
i
j p

(k)

ij

+ 1
n

n∑
i,j=1

δiν
j
i p

(k)

ij = 2
n

n∑
i,j=1

δiν
i
j p

(k)

ij ,

since δip
(k)

ij = δjp
(k)

ji . So, it suffices to prove that

1/n
∑n

i,j=1 δiν
i
j p

(k)

ij = n−k +∑k−1
j=1 tr(Pj). Applying that

Lν i = e − nei we get that

1
n

n∑
i,j=1

δiν
i
j p

(k+1)

ij = 1
n

n∑
i,l=1

δip
(k)

il

n∑
j=1

clj

δl
ν i

j

= 1
n

n∑
i,l=1

δi

δl
p(k)

il

(
δlν

i
l + nei

l − 1
)

= 1
n

n∑
i,l=1

δip
(k)

il ν i
l +

n∑
i=1

p(k)

ii − 1
n

n∑
i,l=1

δi

δl
p(k)

il

= 1
n

n∑
i,l=1

δip
(k)

il ν i
l + tr(Pk) − 1,

since
∑n

i,l=1 δi/δl p(k)

il = ∑n
l=1 1/δl

∑n
i=1 δip

(k)

il = n. The
result follows keeping in mind that

1
n

n∑
i,l=1

δipilν
i
l = 1

n

n∑
i=1

(
δiν

i
i + nei

i − 1
) = n − 1.
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Let us point out that to compute the effective
resistance between any pair of vertices and hence
the Kirchhoff index it suffices to solve n equilibrium
problems. However, it is clear that the number of
problems that we have to solve, could be drastically
reduced if we have additional information about the
network structure. The most striking cases appear
when � has some type of symmetries that allow us
to obtain by hand the equilibrium measures. One
of the main example of this situation is the case of
distance-regular graphs. This kind of graph has been
studied by Biggs [14], Palacios [7], and by the authors
in [9, 10]. A connected graph � is called distance-
regular if there are integers bi, ci, i = 0, . . . , d such that
for any two vertices i, j ∈ V at distance � = d(i, j),
there are exactly c� neighbors of j in ��−1(i) and b�

neighbors of j in ��+1(i), where ��(i) is the set of
vertices at distance � from i. In particular, � is regu-
lar of degree δ = b0. Moreover, ai = δ − ci − bi is
the number of neighbors of j in ��(i) and clearly,
bd = c0 = 0, c1 = 1 and the diameter of � is d.
The sequence

ι(�) = {b0, b1, . . . , bd−1; c1, . . . , cd},

is called the intersection array of �. In addition, the
number of vertices in ��(i) is independent of the
choice of i and will be denoted by k�. Then, k0 = 1,
k1 = δ and the following equalities hold:

k� = b0 · · · b�−1

c1 · · · c�

, � = 2, . . . , d or equivalently

× k�+1c�+1 = k�b�, � = 2, . . . , d − 1. (3)

In [9], we proved that the equilibrium measure ν i
j

depend only on the distance between vertices i and j.
Specifically, ν i

j = ∑d(i,j)−1
l=0 1/klbl

∑d
m=l+1 km and hence

we get the following result, that was previously
obtained in [7] by using a different approach.

Proposition 2.4: For any i, j = 1, . . . , n it is verified
that Rij = 2/n

∑d(i,j)−1
l=0 1/klbl

∑d
m=l+1 km and hence

R(�) =
d−1∑
l=0

1
klbl

(
d∑

m=l+1

km

)2

.

Some particular cases of the above formula are also
important. For instance, we can consider the com-
plete graph, Kn; that is the distance regular graph of

diameter d = 1, whose intersection array is ι(Kn) =
{n − 1; 1}. Therefore, Rij = 2/n for any i �= j and
R(Kn) = n − 1, equality that in this case is nothing
but that the so-called first Foster’s identity. We can
also consider the cycle Cn on n vertices. In this case,
d = �n/2� and the intersection array is given by
ι(�) = {2, 1, . . . , 1; 1, . . . , 1, cd}, where cd = 2 for even
n and cd = 1 for odd n. Then, Rij = d(i, j)/n(n−d(i, j))
and hence R(Cn) = n/12(n2 − 1).

Another interesting family of this type of graph
is formed by the so-called strongly regular graphs;
that is, distance-regular graphs of diameter d = 2.
Therefore, if � is a strongly regular graph, then its
intersection array is ι(�) = {δ, b1; 1, c2} and hence
it is characterized by three parameters. Then, Rij =
2(b1 + c2)/n c2 if d(i, j) = 1, Rij = 2(1 + b1 + c2)/n c2 if
d(i, j) = 2 and hence R(�) = δ/c2

2 (b1 + (c2 + b1)
2).

We finish this article by calculating the Kirchhoff
index for two types of networks that have some sym-
metries but that are not distance-regular graphs; in
fact, they are not even regular.

The first example is the so-called weighted barbell
graph on n = k+m+r vertices, where m ≥ 2 and k, r ≥
1: start with a weighted path on m vertices, labeled
as xk+1, . . . , xk+m and attach a complete network of
order k + 1 at vertex xk+1 and a complete network of
order r+1 at vertex xk+m. Denote by {x1, . . . , xk} the set
of new vertices of the complete network attached to
xk+1 and by {xk+m+1, . . . , xk+m+r} the set of new vertices
of the complete network attached to xk+m. Moreover,
the conductances are given by cij = a, 1 ≤ i < j ≤ k;
ci,k+1 = c0, 1 ≤ i ≤ k; ck+i,k+i+1 = ci, 1 ≤ i ≤ m − 1;
ck+m,k+m+i = cm, 1 ≤ i ≤ r, and ck+m+i,k+m+j = b, 1 ≤ i <

j ≤ r, where c0, . . . , cm > 0 and a, b ≥ 0, see Figure 1.
Observe that when a = 0, respectively b = 0, then
the attached network at vertex xk+1, respectively at
vertex xk+m, is a weighted star. On the other hand,
when k = r = 1, then � is nothing other than a
weighted path on m+2 vertices whose conductances
are c0, . . . , cm.

Because of the symmetries in �, it suffices to cal-
culate the equilibrium measures ν i, i = k, . . . , k +
m + 1. Then, the following identities are easy to
verify:

νk
j = n

ka + c0
, 1 ≤ j ≤ k − 1,

νk
k+j = (k − 1)

c0
+ n(1 − k)a

c0(ka + c0)

+
j−1∑
l=0

r + m − l
cl

, 1 ≤ j ≤ m,
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FIGURE 1. Weighted barbell graph on k + m + r vertices.

νk
k+m+j = (k − 1)

c0
+ n(1 − k)a

c0(ka + c0)
+ (1 − r)

cm

+
m∑

l=0

r + m − l
cl

, 1 ≤ j ≤ r,

for any i = 1, . . . , m,

νk+i
j = (1 − k)

c0
+

i−1∑
l=0

k + l
cl

, 1 ≤ j ≤ k,

νk+i
k+j =

i−1∑
l=j

k + l
cl

, 1 ≤ j ≤ i − 1

νk+i
k+j =

j−1∑
l=i

r + m − l
cl

, i + 1 ≤ j ≤ m,

νk+i
k+m+j = (1 − r)

cm
+

m∑
l=i

r + m − l
cl

, 1 ≤ j ≤ r,

and finally,

νk+m+1
j = (r − 1)

cm
+ n(1 − r)b

cm(rb + cm)
+ (1 − k)

c0

+
m∑

l=0

k + l
cl

, 1 ≤ j ≤ k,

νk+m+1
k+j = (r − 1)

cm
+ n(1 − r)b

cm(rb + cm)

+
m∑

l=j

k + l
cl

, 1 ≤ j ≤ m,

νk+m+1
k+m+j = n

rb + cm
, 2 ≤ j ≤ r.

Therefore, we obtain that

cap(i) = n2(k − 1)

k[ka + c0] + (m + r)2

kc0
+ r

cm

+
m−1∑
l=1

(m + r − l)2

cl
, i = 1, . . . , k,

cap(k + i) = k(1 − k)

c0
+ r(1 − r)

cm
+

i−1∑
l=0

(k + l)2

cl

+
m∑

l=i

(r + m − l)2

cl
, i = 1, . . . , m,

cap(k + m + i) = n2(r − 1)

r[rb + cm] + k
c0

+ (m + k)2

rcm

+
m−1∑
l=1

(k + l)2

cl
, i = 1, . . . , r.

Consequently, it results that

R(�) = n(k − 1)

ka + c0
+ n(r − 1)

rb + cm
+ (m + r)

c0
+ (m + k)

cm

+
m−1∑
l=1

(k + l)(m + r − l)
cl

.

Moreover, the formulas for the equilibrium measures
imply that

Rij = 2
ka + c0

, 1 ≤ i < j ≤ k,

Ri,k+j = (1 − k)a
c0(ka + c0)

+
j−1∑
l=0

1
cl

, 1 ≤ i ≤ k, ≤ j ≤ m,
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Ri,k+m+j = (1 − k)a
c0(ka + c0)

+ (1 − r)b
cm(rb + cm)

+
m∑

l=0

1
cl

, 1 ≤ i ≤ k, 1 ≤ j ≤ r,

Rk+i,k+j =
j−1∑
l=i

1
cl

, 1 ≤ i < j ≤ m,

Rk+i,k+m+j = (1 − r)b
cm(rb + cm)

+
m∑

l=i

1
cl

, 1 ≤ i ≤ m, 1 ≤ j ≤ r,

Rk+m+i,k+m+j = 2
rb + cm

, 1 ≤ i < j ≤ r.

We conclude the analysis of this example by
specifying the above formulas for some particular
interesting cases which have been considered in the
literature. When r = k = 2�−1 and m = 2�+1 where
� ≥ 2 and, in addition, all conductances equal 1, then
� is called the barbell graph on n = 6� − 1 vertices, see
for instance [15]. In this case, we obtain that

R(�) = 2
3�

(26�4 − 9�3 + 31�2 − 21� + 3).

When m = 2 and r = k = � − 1, � ≥ 2, the
corresponding weighted barbell network is some-
times called weighted dumbbell network, see [15]. Then,
n = 2� and

R(�) = 2�(� − 2)

(� − 1)a + c0
+ 2�(� − 2)

(� − 1)b + c2

+ (� + 1)

c0
+ �2

c1
+ (� + 1)

c2
.

If, in addition, a = b and c2 = c0, then R(�) =
4�(� − 2)/(� − 1)a + c0 + 2(� + 1)/c0 + �2/c1. This
identity was obtained in [16, Formula 39] by using
a different approach based on the eigenvalues of the
combinatorial Laplacian.

When k = r = 1; that is, when � is the weighted
path on n = m + 2 vertices with conductances
c0, . . . , cm, we get the well-known identity R(�) =∑m

l=0 (l + 1)(m + 1 − l)/cl, that for unitary weights
becomes R(�) = n/6(n2 − 1).

Let us now consider the so-called wagon wheel net-
work with n ≥ 3 vertices. It is obtained by attaching
a vertex, say n, to a weighted cycle on n − 1 ver-
tices, {1, . . . , n−1}, with uniform conductance a > 0.
Moreover, the conductances of the spoke edges are
ci,n = c > 0 for any i = 1, . . . , n − 1, see Figure 2.

FIGURE 2. Wagon-wheel on n = 13 vertices.

Then, we can verify straightforwardly that

νn
j = 1

c
, 1 ≤ j ≤ n − 1

and hence cap(n) = n − 1/c. To calculate the equilib-
rium measures ν i, 1 ≤ i ≤ n−1, we need to remember
some properties of the First and Second order Cheby-
shev Polynomials, that are respectively defined by the
following recurrences:

T0(x) = 1, T1(x) = x,

Tm+2(x) = 2xTm+1(x) − Tm(x), m ≥ 0,

U−2(x) = −1, U−1(x) = 0,

Um(x) = 2xUm−1(x) − Um−2(x), m ≥ 0. (4)

Moreover, for any m ≥ 0 we have that Tm(x) =
xUm−1(x)−Um−2(x) and also that 2(x−1)

∑m
l=0 Ul(x) =

Um+1(x) − Um(x) − 1, for any x ∈ IR.
Tacking into account the above properties, it is

easy to verify that if q = 1 + c/2a, then for any 1 ≤
i ≤ n − 1 the values of the equilibrium measure ν i

are given by

ν i
j = n

2a[Tn−1(q) − 1] [Un−2(q) − U|i−j|−1(q)

− Un−2−|i−j|(q)], 1 ≤ j ≤ n − 1,

ν i
n = nUn−2(q)

2a[Tn−1(q) − 1] − 1
c

,

which implies that cap(i) = ν i
n + ∑n−1

l=1 ν i
l = nν i

n −
(1/c), since (n − 1)cν i

n − c
∑n−1

l=1 ν i
l = 1. Therefore,

R(�) = 1/n[cap(n) + (n − 1)cap(1)] = (n − 1)ν1
n and

hence

R(�) = n(n − 1)Un−2(q)
2a[Tn−1(q) − 1] − (n − 1)

c
.
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We can obtain an alternative expression for the
Kirchhoff index taking into account that T ′

m(x) =
mUm−1(x) for any m ≥ 0 and that

T ′
n−1(q)

2a[Tn−1(q) − 1] = 1
2a

n−2∑
l=0

1[
q − cos

(
2lπ
n−1

)]
= 1

c
+

n−2∑
l=1

1
c + 2a

[
1 − cos

(
2lπ
n−1

)]
since {cos (2lπ/n − 1)}n−2

l=0 are the roots of the polyno-
mial Tn−1(x) − 1. Therefore,

R(�) = 1
c

+
n−2∑
l=1

n
c + 2a

[
1 − cos

(
2lπ
n−1

)] ,

an identity that was obtained in [16, Formula 38]
by using an approach based on the combinatorial
Laplacian’s eigenvalues.

Finally, the formulas for the equilibrium measures
imply that

Rij = 1
a[Tn−1(q) − 1]
× [Un−2(q) − U|i−j|−1(q) − Un−2−|i−j|(q)],

1 ≤ i, j ≤ n − 1,

Ri,n = Un−2(q)
2a[Tn−1(q) − 1] , 1 ≤ i ≤ n.
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